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The case of convective heat transfer of film-coated fragments of a body surface with media of different 

constant temperature is discussed. In the stage of a generalized regular regime the difference between the 

final and actual temperatures decreases in an inhomogeneous exothermic body in accordance with an 

exponential law. 

The temperature field of an inhomogeneous convex being in a medium of constant temperature te is 

described by the Fourier equation [1-4 ] 

Ot/Or = aV2t, (1) 

when the initial temperature distribution is known 

t (P,  0) = t o (P) (2) 

and convective heat transfer takes place over the body surface 

20t (Ps z)/On = a [ t e - t (Ps , r) I. (3) 

Here 2 is the thermal conductivity of the material, W/(m- K); a is the heat transfer coefficient, W/(m 2" K) ; t e is 
the constant temperature of the surrounding medium, K; Ps are points of the body surface; On is the element of 

the normal to the body surface at the point Ps. As shown by Boussinesq [5 ], the excess temperature of the body 
points, i.e., the difference between the actual temperature t(P, r) and the medium temperature te, is expressed by 

the series 

T ( P ,  , ) - t ( P ,  r ) - t  e=  ~ U n (P) exp ( -  m n v) , 
(4) 

n = l  

which is arranged with respect to the exponential functions of time r. In this case, the rates ml must satisfy the 

inequalities 

0 < m  1 < m z < m  3 < . . .  (5) 

The latter circumstance has allowed Kondrat'ev [5, 6 ] and his group [7-10] to use an asymptotic representation 

of t(P, r) in processing experimental data and in different calculations 

T (P ,  r) = ~ U n (P) exp ( -  m n z) . 
(6) 

n = l  

The distribution function UI(P), henceforth written without the subscript 1, is, as follows from ref. [1 ], a 

solution of the equation 

v2u + m U = 0 ,  (7) 
a 
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where a is the thermal diffusivity of the substance, m2/sec, at the Fourier-Newton boundary condition [3 ] 

aU (Ps) + 20U (Ps)/On = O. (8) 

T h e  rate m, sec -1, is expressed in terms of the body surface S, m 2, its volume V, m 3, thermal diffusivity a, and 

characteristic dimension b, m; the Biot number and the uniformity criterion of a temperature field ~p are based on 
it as follows: 

aS m = ~ Bi ~0. (9) 

The uniformity criterion of a temperature field [11 ] 

~p = S-1  f U (Ps ) dS/v-1 f U (P) dv 
$ y 

(10) 

depends on the Biot number and the body geometry [12 ]. 

However, if the body is inhomogeneous, i.e., its heat capacity C(P), J / (m 3. K), and thermal conductivity 

2(P), W/(m.K) depend on the position of the point P(x, y, z), and a stationary heat source W(P), W/m 3, acts 
inside the body, then the temperature distribution T(P, T) satisfies the Fourier-Poisson equation 

C (P) Ot103 = div D1 (P) grad T] + W (P).  (11) 

Over each fragment Sg of the body surface S heat is transferred by convection to the medium with a constant 
temperature tg. In accordance with the Newton law, on cooling the surface, i.e., when its temperature t(Pg, 3) is 
higher than that of the corresponding medium, a heat flux is described by the product 

qN (Pg, v) = ag [t (Pg, 7;) - tg] (12) 

of fragmentary heat transfer coefficient ag, W/(m 2. K), and the temperature difference between the medium and 

the surface point t(Pg, 3). If a surface fragment is heated by the corresponding medium, i.e., its temperature tg is 
higher than that of the points of the surface fragment t(Pg, 3), then the Newton flux is 

qg (Pg, 3) = ag [tg - t (Pg, 3) 1. (13) 

Usually [3] in cooling a heat flux is assumed positive and the heating flux, negative, although in numerous 

technologies the heat received by a workpiece is considered as positive. The surface fragments are coated with thin 

heat-conducting films whose thickness at each point is b(Pg), m, and whose heat capacity is C(Pg), J/(ma-K).  

These spacers are so then that the temperature gradient in them may be neglected and, on heating, they may be 
assumed to consume the power 

qp (Pg, 3) = b (Pg), C (Pg) OT (Pg, Q/OT, (14) 

which constitutes the capacitive Paddy heat flux [2]. if a surface fragment is being cooled, i.e., 

OT (Pg, Q/0z < 0 ,  (15) 

then the capacitive Paddy flux is negative. 

The conductive Fourier flux penetrates through the points Pg of the fragment Sg into the body 

qF (Pg, 3) = ]t (Pg) Ot (Pg, 3)~On, (16) 

when the temperature gradient is positive, but if the temperature gradient is negative, then the heat flux is directed 
from the fragment points Sg to the surrounding medium 

qF (Jag, 3) = - 2 (Pg) Ot (Pg, T)/On. (17) 

The body itself and its film coating are heated by the power supplied to the body which is expressed by 
the Newton law (13). Obviously, on heating, the equation of heat balance at the points lag will be as follows: 
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qN (Pg, 0 = qr (Pg, 0 + qp (Pg, (is) 

If the body and its coating films are subjected to cooling, Eq. (18) still holds, but all terms on both sides of the 

equality acquire the opposite sign. Therefore in both cases the equation for energy conservation can be reduced to 
the invariant form 

t (Pg, r) + ar 1 ]t (Pg) Ot (Pg, ~)/On + ag 1 b (Pg) C (Pg) Ot (Pg, r ) /0 r  = tg, (19) 

which is valid for all heat conduction processes with the Fourier-Newton-Paddy boundary condition. 

The temperature field described by Eq. (11) at high values of time is due independently of the initial 

distribution (2), to different stationary temperatures of the surrounding media tg and has the following stationary 

limit: 

lim t ( P ,  v) = tf(P) (20) 
T--~ OQ 

which means the end of the heat conduction process inside the body with a stationary distributed heat flux and 

fragmentary heat transfer conditions over its surface. This final temperature field t/ (P) satisfies the Poisson 

equation 

div [2 (P) grad t/] + W (P) = 0 ,  (21) 

since together with the limit equality (20) the rate of temperature change tends to zero 

lim Ot (P, r)/Ov = 0.  (22) 
T--) O0 

Obviously, instead of the boundary condition (19) the final temperature field satisfies the inhomogeneous Fourier- 

Newton condition 

t/(Pg) + ). (Pg) ag 10t/(Pg)/On = tg, (23) 

because for the final field the capacitive Paddy flux (14) is absent. For a nonexothermic body that participates in 
heat exchange with the surrounding medium of constant temperature te, a final temperature will represent the 

temperature of this medium 

lira t (P ,  ~-) = t e (24) 
T - ~  Co 

at all points of the body. Otherwise, for a body without internal heat sources located in a medium with a stationary 

temperature the final temperature distribution will be homogeneous, i.e., entirely gradientless. At fragmentary heat 

transfer conditions the existence of temperature field gradients is inevitable even in the absence of the internal 
heat source W(P). Therefore the excess temperature, unlike [5, 6 ], is determined as a difference between the 

actual t(P, ~) and the final t/(P) temperatures 

T (P ,  v) = t (P,  T) - t f (P) .  (25) 

Obviously, this excess temperature is a solution of the homogeneous Fourier equation 

C (P) OT/Or = div [2 (P) grad T] (26) 

at the homogeneous Fourier-Newton-Paddy boundary condition 

ag T (Pg, r) + )t (Pg) OT (Pg, v)/On + Cg (Pg) b (Pg) OT (Pg, ~)/Ov = 0. (27) 

which is not related to the ambient temperatures. Integrating this relation with respect to the body surface and 

using, instead of (27), the Ostrogradsky formula yields the equation 

d f C(P) T ( P  r) d V +  f C(Pg) b(Pg) OT(Pg, ~) ' 0 dS -- - f % r (Pg, v) dS.  (28) 
V $ $ 
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Following Kondrat'ev [5, 6 ] and Boussinesq, we may, in a first approximation, represent the excess temperature 

T(P, z) as the product of the distribution function U(P) and the exponential function of time 

T (P,  ~) = U (P) exp ( -  mr) .  (29) 

The function of coordinates U(P) and other thermophysical parameters of the substance, and of the heat transfer 
coefficients satisfies the Helmholtz equation 

div [;t (P) grad U] + mC (P) U = 0 (30) 

and the modified (27) Fourier-Newton-Paddy condition 

0v  (pg) 
% v (e~) + ~ (e )  on - mc (e~) b (e~) v ( e )  = 0.  (31) 

In order to determine m, it is expedient to use Eq. (28), from which it follows that 

X f a X a g f  U(Pg) dSg 
g g Sg (32) 

m =  

f c (p) v (p) a v + E f b (eg) c (pg) v (~,g) as e 
v g Sg 

The quantity m is the complex distribution function of the fragments Sg over the body surface S, of heat capacity 

and thickness of the films, the body geometry, and the heat transfer coefficients. In the absence of the films on 
the body surface, constant values of the heat capacity of the substance, and of fragmentary heat transfer 

coefficients, the expression for rate (32) coincides with (9). It is sufficient to determine the mean values of the 
distribution functions over the surface fragments and in the body volume 

f v (pg) as~ = vg s~. (33) 
Sg 

f U (P) dV = U11 V, (34) 
11 

and the mean heat capacities of the body 

f c (p) u (P) dV = -C u~, v (35) 
11 

and of the films coating it 

so that the expression for rate (32) 

f b (P) C (Pg) u (pg) riSe, = [bc]g Ug Sg, 
Sg 

m 

(36) 

~, ag Sg Ug (37) 

v11 v + X tbclg eg sg 
g 

b = 0 (38) 

with constants 

C ( P ) = c o n s t ;  2 ( P ) = c o n s t ;  a g = a ;  

coincides with (9). If the volume heat capacity C(P) can be neglected 

C (P) --- 0 ,  (39) 

then the cooling (heating) rate of the coating is 
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m =  Z c t g U g S g / E  [bc]gUgSg. (40) 
g g 

It is pertinent to note that the steady-state ambient temperatures tg and the internal heat source W(P) do 

not influence the rate although they affect substantially the final temperature distribution t/(P). If these 

temperatures and the internal heat source are nonstationary but in the course of time are stabilized, 

lim tg (r) = tg, (41) 
T---~ O0 

lim W ( P ,  r) = W(P) 
T - - ) ~  

(42) 

so that the relations 

I W ( P ,  v ) -  W(P) I < W o e x p ( - m  i v ) ,  (43) 

Itg(t) - tg I < t Oexp ( -  m 2~), r > v  r (44) 

and the quantities 

m 1 , m 2 > m ,  
(45) 

hold, then the final distribution satisfies the Poisson equation (21) and the boundary condition (23). Therefore 

t he  transition to the steady state will be described by the exponential relation (29). In case where the ambient 
temperatures and the internal heat source have no stationary stable limits, a relict component of the temperature 
field should not be forgotten whose major part decreases exponentially with time. 
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